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• Adaptive background-error covariance localization and inflation/deflation 
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• Online bias correction 
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• Assimilation of sea level height 

• Online bias correction 

• Multivariate projection method 

• Assimilation of in situ T and/or S  
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Atmospheric Observing System 

 GEOS-5 ADAS   14 May 2008 00UTC    
1,557,926 observations – 90% from satellites 

The atmospheric observing system today… 
a 6-hr snapshot (courtesy of Ron Gelaro, GMAO) 



Ocean Observing System 

Jason altimeter track: 1 day - ~2500 obs./day 

In situ data: 1 month (Jan. 2010) 

Historical availability of in situ data 

 The density and vertical coverage of in situ data 
has increased tremendously but the ocean is still 
poorly observed vs. the atmosphere.  Hence, 
assimilating surface measurements from remote 
sensing is a must.  
 

ODAS-2 data 

• Topex/Jason SSH anomalies 

• Argo in situ T and S profiles 

• In situ T from TAO, XBT, Pirata and Rama 

• Reynolds SST 

• Levitus surface salinity while waiting for Aquarius 

 

 

Argo: 291 profiles/day XBT: 31 profiles/day  
TAO: 64 profiles PIRATA: 9 profiles 
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ODAS-1 

ODAS-2 

• Ocean-only runs 

• OGCM: Poseidon 4 

• Analysis algorithms 

• EnKF 

• MvOI (EnKF analysis with steady-state fixed ensemble) 

• UOI (functional univariate background covariances) 

• GEOS-5 Coupled Model: 

• OGCM: MOM-4 (0.5°X 0.167-0.5°X 40L) or any other ESMF-ready model 

• AGCM: GEOS-5 AGCM (1.25°X 1°X 72L) 

• Analysis algorithms 

• Atmosphere: “replay” of GMAO atmospheric analysis 

• Ocean: “Augmented” hybrid EnKF/lagged EnKF/particle filter approach  

 

• ODAS implemented as ESMF gridded-component -> model independent 

CGCM forecast 

LSM-AGCM-OGCM coupling 

ODAS-1 

CGCM forecast 

ADAS replay 

ODAS-2 

CGCM 

OGCM 
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GEOS-5 CAP 

ESMF MAPL 

GEOSGCM1 

OGCM AGCM 

misc.libraries 

ODAS-2 

GEOSGCS 

GEOSANA 

AANA 

GEOSGCM2 

GEOSGCM3 

GEOSGCM4 

Etc… 

GEOSGCM 

OGCM AGCM 

sea ice 
physics 

dynamics 

chemistry,  

radiation,  

moisture,  

turbulence,  

etc… 

FV dycore, 

topography, 

etc… 

Ocean 
radiation 

biogeochemistry guest ocean 

GEOSGCM current configuration: 

• OGCM: MOM4p1 720x410x40 grid 

• AGCM: GEOS5 AGCM 288x181x72 grid 

 
(Each subsystem implemented as ESMF gridded component)  

GEOS-5 coupled model and 
coupled ensemble system 

MOM4, Poseidon 5 or 
Other ESMF-ready OGCM 
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5: incremental analysis update (IAU) 

4: rewind AGCM 

 

1: AGCM forecast (F) 

06z 03z 
09z time 

2: read atm. analysis (A) 

3: calculate atm. increment (A-F)  

5: incremental analysis update (IAU) 

4: rewind AGCM 

 

1: AGCM forecast (F) 

06z 03z 
09z 

2: read atm. analysis (A) 

3: calculate atm. increment (A-F)  

5: incremental analysis update (IAU) 

4: rewind AGCM 

 

1: AGCM forecast (F) 

12z 15z 

2: read atm. analysis (A) 

3: calculate atm. increment (A-F)  

5: incremental analysis update (IAU) 

4: rewind AGCM 

 

1: AGCM forecast (F) 

18z 21z 

2: read atm. analysis (A) 

3: calculate atm. increment (A-F)  

03z 

5: incremental analysis update (IAU) 

4: rewind AGCM 

 

1: AGCM forecast (F) 

00z 

2: read atm. analysis (A) 

3: calculate atm. increment (A-F)  

ocean 
analysis 

ocean 
analysis ocean IAU 

Atmospheric analysis replay 
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The data assimilation problem 

Objective: Find the best possible estimate 
of xt given x, y and their error distributions 

The Kalman Filter (Kalman 1960) 
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The ensemble Kalman Filter 

Evensen (1994, 1996) 

Replace background-covariance evolution with ensemble integration 
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the update for ensemble member xi is computed as  

(from right to left -> only matrix-vector products): 
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3 Sources of background-error covariance information 

Low pass filter 

Ensemble member 

time 

f

func

f

stat

f

dyn

f
PPPP 

Pstat: Static ensemble of time-independent “error EOFs” 

Error EOFs calculated from a time series of differences between a coupled model run 
constrained by replaying the GMAO atmospheric analysis and unconstrained short-term forecasts 

 

 

 

 

 

 

 

Pfunc: Pseudo-Gaussian univariate covariance term 

 

Pdyn: State-dependent error-covariance basis vectors from ensemble integration 

• Current state of each ensemble member minus low pass filter 

• Past states of each ensemble member minus a low pass filter 

ODAS-2 Augmented EnKF 

t1+d t1+2d t1+3d t1+4d 

time 

t1 



 
10 

Marginal Kalman gain: T obs @(0n,156E,150m) on 12/31/01  
horizontal section through <T’,T’> covariances 

EnKF-33 

EnKF-17 

EnKF-9  

EnKF-65 

Unfiltered,  
not compactly supported 

0.63 

0.51 

0.36 

Unfiltered,  
compactly supported 

0.70 

0.58 

0.46 

Filtered, 
compactly supported 

0.77 

0.75 

0.67 

• Static, not flow adaptive 3D localization along (x, y, z) space dimensions 

• Also apply Gaussian filter to deviations from ensemble mean ni,i 1 xx

ODAS-1 Error-Covariance Localization 
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ODAS-2 flow-adaptive and observation-adaptive analysis 

 

• Flow adaptive error-covariance localization  following neutral density [(x, y, z, r) dimensions] 

• Adaptive optimization of error-covariance localization scales (x, y, z) used with each observation 

• Adaptive estimation of representation error associated with each observation 

• Adaptive background-error covariance inflation/deflation 

• Adaptive rescaling of analysis increments 

• Particle pre-filter 
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2.  Tried hierarchical ensemble filter (Anderson 2007) 
• Observations must be processed serially (akl Pkl  is not a covariance) 

1.  Traditional approach (as in ODAS-1) 
C(dx, dy, dz, dt) is an approximately Gaussian compactly supported correlation function 
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3. Bishop’s (2007) flow adaptive moderation of spurious covariances 
• Some long-range spurious features are amplified.  
• Assimilation performance (OMFA statistics) worse than case 1 
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4. Back to approach 1 with localization in (x, y, z, t, neutral density) space 
• Respects flow-dependent gradients such as thermocline and fronts 
• Adaptive optimization of localization scales involved in processing each observation 
• Assimilation performance better than case 1 

ODAS-2 adaptive error covariance localization: successive stages 



ODAS-1: lx(y) and ly(y) proportional to Rossby radius of deformation 

ODAS-2: lx(x,y,z,t), ly(x,y,z,t), lz(x,y,z,t) & lr(x,y,z,t) optimized iteratively for each datum 

C0 is a compactly supported analytical covariance function (Gaspari and Cohn 1985)  
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Covariance localization is the most numerically intensive part of the ensemble assimilation system 

ODAS-2 flow-dependent error-covariance localization along neutral density surfaces 



Marginal Kalman gain:  

unit T innovation at 95m  

Marginal Kalman gain:  

unit SSH innovation along equator  

ODAS-2 flow-dependent error covariances 
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For each observation y0, process neighboring observations as though they were perfect 
(R=0) and optimize the localization by iteratively solving for the lx, ly & lz that minimize   
 
 
 

: an observation 
 

: maps the state vector to y0  

: set of neighboring observations of same variable excluding y0  

: maps the state vector to  yn 

Example:  
optimized lx and ly localization scales for 
Reynolds SST data on Jan. 1 2007 
expressed as a fraction of the default 
Rossyby-radius dependent localization 

ODAS-2 adaptive error-covariance localization 
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For each individual observation, 
after optimization of the 
covariance localization parameters 
lx, ly & lz, the representation error 
is estimated as 
 
 
 

Estimated representation error  
for Reynolds SST data 

Jan. 1 2007 

Difference in SST increment :  
adaptive (errors + localization + covariance inflation) – standard assimilation (adaptive inflation only) 

ODAS-2 adaptive representation-error estimation 



Example for one ARGO T profile  
at (16S, 0W) on Jan. 1, 2007 

Relative x 
loc. scale 

Relative y 
loc. scale 

Relative z 
loc. scale 

OMF OMA obs 

• Optimal horizontal scales: ~60% of Rossby-radius dependent scales @250m, larger @1000m 
• Optimal vertical localization scales: minimum in thermocline. Default (250m) is too short near 1000m 
• Representation error estimate (obs): maximum in thermocline, very small below 1000m   
 

ODAS-2 adaptive localization and representation-error estimation 



Following Desroziers et al. we have: 
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: observation operator (e.g., interpolation) for observation i (scalar) 

Not prohibitively expensive because does not require calculation of C°HPHT 

Parallel algorithm involves each CPU minimizing RMS analysis 
error variance for a subset of all the observations (all the 
observations that influence state variables pertaining to that 
CPU).  The increment, D, is then optimized globally by 
rescaling it (D gD) such as to globally minimize  
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ODAS-2 adaptive error-covariance inflation 

Assimilation increment rescaling 



• Find ensemble member xp that is closest to the data in terms of RMS OMF 
• Displace the whole ensemble by an increment Dp = xp - xm where xm is the ensemble mean 
• Thereafter, apply the ensemble Kalman filter analysis  
    

xm 

Y 

Dp 

xp 

xm 

Y 

xp 

Motivation: ensemble mean is not necessarily a realizable state.  
Hence we want to improve upon this state by shifting the 
ensemble mean to the ensemble member that is closest to the 
observations (a realizable state). 
    

ODAS-2 particle pre-filter 



• CGCM 

• Data 

• Daily assimilation of ARGO T profiles 04/01/06 – 05/31/06 (active data set) 

• ARGO S profiles used for validation (passive data set)  

 

• Initial condition  

• 03/01/06 coupled model restart from single coupled model run with atm. Anal. Replay 

 

• Ensemble initialization (03/01/06 – 04/01/06)  

• initial perturbation from linear combinations of model signal EOFs 

• daily perturbations with 1% of initial perturbation amplitude 

 

• Assimilation (04/01/06-05/31/06) 

• CE-16: 16-member control ensemble – no assimilation 

• EnKF-16x11: 16 streams (model integrations) and 10 past instances in each stream (lag = 1 day)  

• HPEnKF-16x11: reordering particle pre-filter HPF-16 used prior to each EnKF-16x11 analysis  
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ODAS-2 particle pre-filter example:  

assimilate in situ ARGO T data. Validate against ARGO S data 
 



CE-16 RMS OMF – ENKF-16x11 RMS OMF: z<200m   

CE-16 RMS OMF – HPENKF-16x11 RMS OMF: z<200m   

CE-16 RMS OMF – ENKF-16x11 RMS OMF: z>200m   

CE-16 RMS OMF – HPENKF-16x11 RMS OMF: z>200m   
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Salinity improvement  over control ensemble  
Warm (resp. cold) colors denote areas where the 
analysis is closer to (resp. further away from) 
the passive S ARGO data than the control 
ensemble in May 2006 (last month of exp).  

EnKF 16x11 better  

CE-16 better  

HPEnKF 16x11 better  

CE-16 better  

EnKF 16x11 better  

CE-16 better  

CE-16 
RMS OMF=0.51  

EnKF 16x11 
RMS OMF=0.50  

HPEnKF 16x11 
RMS OMF=0.37  

Global salt  
OMFA statistics: 

mean OMF 
RMS OMF 
mean OMA 
RMS OMA 

better than 
control below 

200m 

better overall 

 
ODAS-2 particle pre-filter example: assimilate in situ ARGO T data. Validate against ARGO S data 
 

HPEnKF 16x11 better  

CE-16 better  
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y – H(x): total innovation 
y – H(x - b): unbiased innovation 

model climate 

b) Assimilation with online bias estimation (OBE) 

true climate 

B
ia
s 

e
st

im
a
te

 

Side by side estimation of 
• bias  
• unbiased error component 

T
ot

a
l 
e
rr

or
 true climate 

model climate 

a) Standard assimilation 

b
ia
s 

• Challenge 1: model bias changes as the data are assimilated 

• Challenge 2: must derive T(z), S(z) u(z) and v(z) from scalar h measurements 


z

dzzf ))((rh

SSH bias estimate 
snapshot 04/01/2006 

Online bias correction and assimilation of SSH anomalies 



Control  

RMS T OMF = 1.76C 

MVOI (static ensemble)  

RMS T OMF = 1.48C 

EnKF-8x1  

RMS T OMF = 1.3C 

Experiment duration 01-07 2007 

RMS T OMFA statistics at TAO moorings 

TAO T data are passive  

SLA is active 
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Online bias correction and assimilation of SSH anomalies 

RMS T OMFA statistics at TAO 

mooring locations (April-July 2007) 

Note: ensemble initialization during first two months of EnKF run 



SST + SSS assimilation SLA assimilation SST + SSS + SLA assimilation 

RMS T OMF diff. 0-300m 

RMS T OMF diff. 300-2000m 

•Assimilation of SST + SSS alone does not improve the subsurface T much (vs. control)   

•SLA assimilation with online bias correction improves upon control, but not in Nino-4 area (0-300m) 

•Assimilating SST + SSS + SLA mostly corrects the 0-300m Nino-4 area deficiencies   

Validation of surface data assimilation using passive (not assimilated) sub-surface Argo data 
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T improvement over control: control RMS T OMF – ODAS RMS T OMF 

Experiment 
is better  

Control 
is better  

Experiment 
is better  

Control 
is better  



SST + SSS assimilation SLA assimilation SST + SSS + SLA assimilation 

RMS S OMF diff. 0-300m 

RMS S OMF diff. 300-2000m 

• SLA assimilation alone very effective is improving S over the control 

• Best results for S seen when assimilating SST + SSS + SLA 

Validation of surface data assimilation using passive (not assimilated) sub-surface Argo data 
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S improvement over control: control RMS S OMF – ODAS RMS S OMF 

Exp. 
better  

Control 
better  

Exp. 
better  

Control 
better  



1 

2 
3 

ARGO T 
Analysis 
forecast 

ARGO S 
Analysis 
forecast 

ARGO T 
Analysis 
forecast 

ARGO S 
Analysis 
forecast 

TAO T 
Analysis 
forecast 

TAO synthetic S 

Analysis 
forecast 

1 1 

2 2 

3 3 

T and S forecast and analysis compared to some 
un-assimilated in situ profiles near the altimeter 
track at the time of the first assimilation 

Online bias correction and assimilation of SSH anomalies 
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Summary 

 

• Ocean data assimilation into GMAO CGCM with “replay” of the GMAO atmospheric analysis   

• Combining static and dynamic ensembles (including lagged ensemble) gives best performance 

• Multivariate background covariances effective in improving unobserved model variables 

• SLA assimilation improves subsurface T & S, but best results with SST + SSS + SLA assim. 

• Ensemble data assimilation system ready for production runs 

• Started 1950-present retrospective analysis 

 

 

Outlook 

 

• Moving towards fully coupled data assimilation system through data assimilation into the skin layer 

 (building upon NCEP GSI work) 

• Ready for new data types, starting with Aquarius 

 

GMAO ODAS webpage: http://gmao.gsfc.nasa.gov/research/oceanassim  


